
 1

ME 4773/5493 Fundamental of Robotics

Fall 2016

San Antonio, TX, USA

TRAINING A ROBOTIC MANIPULATOR

Jonathan Sackett

Dept. of Mechanical Engineering
San Antonio, TX, USA 78249

jonathan.sackett@utsa.edu

ABSTRACT

A method for training a 3-link robotic manipulator was used

to draw a picture on a whiteboard. This is a method that can be

used to train any robot in a difficult to map motion. The training

was done by manually manipulating the robot along the desired

path while recording its’ joint angles in Matlab. While the

method is simple, the result contained large errors.

1. INTRODUCTION

A robot is a machine that can do the work of a person and

that works either automatically or by user control. Robotics is a

field of engineering that is concerned with the design, building,

and operations of robots. A manipulator is a mechanism that

performs an operation, it functions as if it was an arm and is

actuated in a skillful manner. An operator can use a manipulator

to manipulate objects indirectly. Manipulators can be used to

handle hazardous materials, access inaccessible places, and

precision actions like welding and medical surgery. While there

are different methods to control a manipulator, the experiment

below focuses on the process of training a manipulator to

perform a task or follow a path. [1, 2]

2. NOMENCLATURE

D-H Table - Denavit-Hartenberg Table

DOF - Degrees of Freedom

PLA - Polylactic Acid

Inverse Kinematics - the use of the kinematics equations of

a robot to determine the joint parameters that

provide a desired position of the end-effector

Trajectory Generation - iterates the solution to the end-

effector position and orientation by a specified

time-interval

End Effector - the device at the end of a robotic arm,

designed to interact with the environment

3. METHODS

The manipulator used in the experiment is a 6-degree of

freedom multi-link robotic manipulator. This means that the

manipulator can actuate, or operate, anywhere within in the

space around it. The spans out about 1.7 feet of length. It is

comprised of 3 modular rectangular PLA links to house servos,

a PLA bracket for the gripper, a PLA base for the electronics, and

7 Dynamixel AX-12 servos for actuation. The robot was

designed for understanding manipulator theory and for

demonstrating the abilities of robotic manipulators.

Figure 1

The joints are actuated by the Dynamixel AX-12A

servomotors that allow position, speed and torque control. A

block diagram of the system is provided in Figure 4. The

computer will be transmitting and receiving instruction and

status packets respectively via USB port through a half-duplex

communication protocol.

Figure 2

The 3-link robotic manipulator was trained to follow a path

by recording the input required to copy a manual movement.

Joint angle measurements were collected as the robot was moved

manually along the required path to draw a smiley face, see

Figure 3. Then, that data was input back so the robot could

perform the motion on its’ own.

The manipulator follows the parameters outlined in Table ,

the D-H Table, above. The following list describes the

parameters used in the D-H table.

 2

Denavit-Hartenberg Table Parameters

• Link # - number assigned to the link

• Theta - joint angle associated with the servo motor

• d - distance between adjacent x-axis

• a - distance between adjacent z-axis which correspond

with link length

• Alpha - angle between adjacent z-axis along the x-axis

The actuation of the robotic manipulator is executed through

the use of MATLAB and Simulink.

Trajectory Generation utilizes the techniques established in

Inverse Kinematics but iterates the solution to the end-effector

position and orientation by a specified time-interval. First, the

trajectory is a time function that is described in a three-

dimensional Cartesian space. To add, the end-effector is only

allowed to actuate in the upper, ¼ of the space due to the limiting

angles provided by the servo motors. Next, the solutions are

executed iteratively as the resulting joint angles are inputted into

the corresponding servomotors and the manipulator’s end-

effector moves in that specified trajectory.

The motion (Figure 6 below) was created by slowly moving

the manipulator along a smiley face that was drawn on a white

board. During the motion, each of the joint angle values were

recorded in Matlab. As the angles were being recorded, the robot

was slowly manipulated by hand to trace the curves of the smiley

face. These values were recorded by using a Simulink block

diagram. The robot has a custom-built library used to integrate it

with Simulink.

Figure 3

As you can see in Figure 4, the blocks are assembled to

return an array of the joint angle positions. The box on the right

is set up to loop this operation until stopped.

Figure 4

Figure 5

4. RESULTS

In Table 2 in the appendix, the first 50 joint angles of the 6

servos are recorded from the training of the robot. Recording

the angle of every servo at .001 second intervals, resulted in

1792 total data points. This many data points per servo

ensured that the smiley face output was accurate.

As can be seen in Figure 5, the training method using a small

step size produced smooth joint angle curves. However, it

can also be seen in Figure 7 that the method still did not

produce a very accurate picture. Of note, the circles for the

head and eyes of the face did not connect properly.

Additionally, every time the marker was applied and

removed from the whiteboard, a streak was made that was

not a part of the original drawing. Lastly, a systematic error

is visible in the jagged curves produced by unsmooth

training of the robot.

 3

Figure 6

Figure 7

5. DISCUSSION

Even with a fractional step size, the user can still introduce

large errors into the system. As notable in Figure 7, inputting the

raw data back into the robot is a blunt force method that produces

a drawing with great error.

An alternative method would be to use Fourier analyses to

curve fit each part of the circle. This method would be much

more user extensive as it would require time spent on analyses

of the data. However, the method would also reduce errors

created during the tracing step. Another alternate method would

be to use trajectory motion to draw the face. This method would

produce a highly accurate, and highly controllable result.

By using the training method for the robot’s movement, the

user can skip having to fully understand and apply using

manipulator theories. The user would simply need a simple

understanding of the process.

ACKNOWLEDGMENTS

Thank you to Sergio Molina for helping to being an extra set

of hands for performing the experiment. Also, thank you to Dr.

Bhounsule for teaching robotics in a way that makes a student

want to continue to dive deeper and apply robotics.

REFERENCES

[1] Alabi, P. et al. (2015) Multi-link Robotic Manipulator,

UTSA, 2016.

[2] Niku, Saeed B. Introduction to Robotics: Analysis,

Control, Applications. Hoboken, N.J: Wiley, 2011.

 4

APPENDIX

Figure : Plot of Angular Position Values with 100 Hz Sample Time

Script code
clc

loadlibrary dynamixel
calllib('dynamixel','dxl_initialize',3,1);

calllib('dynamixel','dxl_write_word',1,32,40)
calllib('dynamixel','dxl_write_word',2,32,40)
calllib('dynamixel','dxl_write_word',3,32,40)
calllib('dynamixel','dxl_write_word',4,32,40)
calllib('dynamixel','dxl_write_word',5,32,40)
calllib('dynamixel','dxl_write_word',6,32,40)

th1 = Joint_Read_Values.signals(1).values;
th2 = Joint_Read_Values.signals(2).values;
th3 = Joint_Read_Values.signals(3).values;
th4 = Joint_Read_Values.signals(4).values;
th5 = Joint_Read_Values.signals(5).values;
th6 = Joint_Read_Values.signals(6).values;

for i = 1:length(th1)

K1 = 4096/360;
joint_1 = round(K1*th1(i,1)+2048);
calllib('dynamixel','dxl_write_word', 1, 30, joint_1);

K2 = 940/90;
joint_2 = round(K2*th2(i,1)+2130);
calllib('dynamixel','dxl_write_word',2,30,joint_2);

K3 = 950/90;
joint_3 = round(K3*th3(i,1)+2120);
calllib('dynamixel','dxl_write_word',3,30,joint_3);

K = 3.406;
joint_4 = round(K*th4(i,1)+512);
calllib('dynamixel','dxl_write_word',4,30,joint_4);

 5

joint_5 = round(K*th5(i,1)+512);
calllib('dynamixel','dxl_write_word',5,30,joint_5);

joint_6 = round(K*th6(i,1)+512);
calllib('dynamixel','dxl_write_word',6,30,joint_6);

end

 6

Table 1: Servo Angles (first 50 values)

Servo 1 Servo 2 Servo 3 Servo 4 Servo 5 Servo 6

‐0.17578125 ‐4.308510638 ‐9.852631579 0 1.174398121 0

‐0.17578125 ‐4.308510638 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐4.308510638 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐4.404255319 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐4.308510638 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐4.308510638 ‐9.852631579 0.29359953 1.174398121 0

‐0.17578125 ‐4.308510638 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐4.404255319 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐4.404255319 ‐9.757894737 0 1.174398121 0

‐0.087890625 ‐4.5 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐4.5 ‐9.757894737 0 1.467997651 0

‐0.17578125 ‐4.5 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐4.5 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐4.5 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐4.5 ‐9.757894737 0 1.174398121 0

‐0.087890625 ‐4.404255319 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐4.308510638 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐4.308510638 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐4.212765957 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐3.734042553 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐3.446808511 ‐9.757894737 0 1.174398121 0

‐0.263671875 ‐3.063829787 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐2.20212766 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐1.531914894 ‐9.757894737 0 1.174398121 0

‐0.17578125 ‐0.957446809 ‐9.757894737 ‐0.29359953 1.174398121 0

‐0.17578125 ‐0.478723404 ‐9.757894737 ‐0.58719906 1.174398121 0

‐0.17578125 0.574468085 ‐9.757894737 ‐0.880798591 1.174398121 0

‐0.263671875 1.531914894 ‐9.757894737 ‐1.174398121 1.174398121 0

‐0.439453125 2.20212766 ‐9.663157895 ‐1.761597181 1.174398121 0

‐0.3515625 3.35106383 ‐9.663157895 ‐2.055196712 1.174398121 0

‐0.439453125 4.117021277 ‐9.663157895 ‐2.642395772 1.174398121 0

‐0.439453125 4.882978723 ‐9.568421053 ‐2.935995302 1.174398121 0

‐0.439453125 6.031914894 ‐9.568421053 ‐3.229594833 1.174398121 0

‐0.439453125 6.989361702 ‐9.473684211 ‐3.523194363 1.174398121 0

‐0.439453125 7.659574468 ‐9.568421053 ‐3.523194363 1.174398121 0

‐0.439453125 8.425531915 ‐9.568421053 ‐3.816793893 1.174398121 0

‐0.439453125 9.287234043 ‐9.473684211 ‐3.816793893 1.174398121 0

‐0.52734375 9.861702128 ‐9.378947368 ‐3.816793893 1.174398121 0

‐0.615234375 10.72340426 ‐9.189473684 ‐3.816793893 1.174398121 0

‐0.615234375 11.77659574 ‐9.189473684 ‐4.110393423 1.174398121 0

‐0.615234375 12.63829787 ‐9.189473684 ‐4.110393423 1.174398121 0

‐0.615234375 13.30851064 ‐9.094736842 ‐4.110393423 1.174398121 0

‐0.615234375 14.36170213 ‐8.905263158 ‐4.110393423 1.174398121 0

‐0.615234375 14.93617021 ‐7.957894737 ‐4.110393423 1.174398121 0

‐0.52734375 15.5106383 ‐6.915789474 ‐4.697592484 1.174398121 0

‐0.615234375 15.79787234 ‐5.873684211 ‐5.578391075 1.174398121 0

‐0.52734375 15.9893617 ‐4.926315789 ‐6.752789196 1.174398121 0

‐0.52734375 16.65957447 ‐4.357894737 ‐7.339988256 1.174398121 0

‐0.52734375 17.90425532 ‐3.978947368 ‐7.927187317 1.174398121 0

 7

Table 2

