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Abstract. For its fifth participation to the RoboCup Kid-Size
Humanoid League, the Rhoban Football Club reached the first place
of the competition in 2016 in Leipzig. This competition aims at oppos-
ing teams of small autonomous humanoid robots in real soccer games.
Implementation of complex mechanics, electronics and software systems
is needed. In this paper, we summarize and describe some distinctive
parts of our architecture. Going from our foot pressure sensors, our open-
source alternative Dynamixel firmware, the use of kinematics models,
the odometry and camera calibration to our perception system as well
as simple but effective team play strategies.

1 Introduction

Within the RoboCup competition, the Humanoid League'gathers the commu-
nity of custom humanoid robots playing soccer. Unlike in the Standard League,
the robots are built by the teams (mechanics, electronics, software) constrained
by humanoid morphology and human-like sensors (no lidar, infra-red, laser,
ultrasonic, ...). The Humanoid League is divided in three sub-leagues accord-
ing to the robot’s height: Kid-Size (40 cm to 90 cm), Teen-Size (80 cm to 140 cm)
and Adult-Size (130cm to 180cm). For budgetary and practical reasons, the
Kid-Size League gathers more teams (17 in 2016) than the other two (4 and 8
in 2016). During Kid-Size games, two teams of four fully autonomous humanoid
robots are playing an adapted soccer version. The field size is 6 m by 9m and
the ground is made of artificial grass with white lines, white goal posts. The ball
is at least 50% white.

The Rhoban team is a young small research group in robotics from the
LaBRI, a computer science laboratory of the University of Bordeaux, France.
It was founded by Olivier Ly in 2010 and is mainly interested in mobile robots,
in particular legged and humanoid robots. Our main research activities target
motion control and locomotion, including quadruped gaits, kick synthesis, walk-
ing control and learning odometry and planning.

! RoboCup Humanoid League rules: https://www.robocuphumanoid.org/materials/
rules/.
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Our interest in the RoboCup Kid-Size is motivated by the very challenging
competition along with the great community. The autonomous soccer Humanoid
League is a well suited game to address state of the art locomotion and perception
questions while allowing for mechatronic innovations. We support the emphasis
of the competition on robustness and real world applications of robotics methods.

From our very first participation in the RoboCup in the Kid-Size league in
2011, we learned the importance of mechanical and electronics robustness which
led to our second participation in 2013 where we managed to score our first goals.
But only after a complete redesign of the walk and the vision system, we were
able to reach the quarters in 2014. Then in 2015 — with the new rules including
artificial grass — we achieved the third place while beginning to redesign our
core software architecture. For our first time, we had the possibility to work on
some more “advanced” components such as foot pressure sensors, localization
and odometry estimation from a kinematic model. All these developments even-
tually led us to the first place in 2016, after we finished the redesign of our core
architecture along with numerous improvements of our system.

In the following, we describe specific technical points on our RoboCup 2016
architecture that could be interesting to share with the community. First, Sect. 2
presents distinctive hardware foot pressure sensors and the choice of industrial
camera. Section 3 describes our optimized electronics custom router board and
our alternative Dynamixel open-source firmware. Finally Sect.4 outlines our
major software components: the complete kinematics model, the odometry and
camera calibration, the vision pipeline and the localization particle filter, our user
interface tools, the team play and high level strategies and finally our monitoring
tool.

2 Hardware

2.1 Foot Pressure Sensors

Our major hardware specificity is the use of strain gauge based force sensors in
the robot’s feet [8]. The device takes advantage of the cleats that were added
by many teams when switching from flat carpets to 3 cm artificial grass in 2015.
Our feet have a rectangular support polygon while getting all the contact forces
with the ground through four points. Each of these points is linked to the core of
the foot by a mechanical bar with strain gauges glued on it. It forms a resistor
network whose values vary according to the mechanical deformations. See Fig. 1
of an overview of the device.

We designed a custom electronic board that features amplifiers and a small
microcontroller that is able to communicate directly through the Dynamixel
serial bus, allowing daisy chaining with the last ankle motor and thus simplifying
hardware integration. The strain gauges are low-cost off-the-shelf components
easy to find on the market. The mechanical and electronic designs are open-
source [10].

The strain gauges measure the normal component of the ground reaction
force at each point of the cleats, which allows to compute the center of pressure
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Fig. 1. An overview of our feet devices, below view (on the left) and top view (on the
right)

(CoP) of the robot. The latter is the point P on the ground where the moment
of the ground reaction forces vanishes [11]. It is then defined as:

p_ 2ifidi
> Fi
where F; and J; are respectively the force measured and the position of the ith
gauge. It is the geometric barycenter of the cleat positions with measured forces
as weight.

We use these sensors to enhance the walking stability, tackling the problem
of lateral balance. This was already discussed in [4,7]. They proposed a capture
step approach, using the data from the motor encoders and from the inertial
measurement unit to estimate the position and speed of the center of mass. The
inverted pendulum model is then used to predict and adjust the support swap
timing and position. Our approach has similarities since we also have a nominal
trajectory for the center of pressure that is compared with the one we estimate
using the sensor. A threshold ensures that the mass is transferred to the other
foot during support swing, and pauses the move if it does not?.

We assessed the efficiency of this method using the setup shown in Fig.2. A
1 Kg mass is attached to a 1.9 m rope and is dropped repeatedly on the robot at
0.5 and 0.6 m. This setup is similar to one of the challenge of the kid-size league
named push recovery. The experimental results are summarized in Table 1.

Table 1. Push recovery tests with and without the stabilization loop enabled.

Stabilisation enabled | Stabilisation disabled
Fall | No-fall Fall | No-fall

50cm | 1 19 15 |5

60cm |9 11 14 |6

2 This behavior can be seen in action in the video: https://youtu.be/avJI_cBuMmO.
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Fig. 2. Benchmark setup for the lateral perturbation rejection tests.

2.2 Cameras and Lenses

In 2016 we decided to switch from standard webcams to small industrial cameras
(See3CAM_11CUG from e-con Systems). This change was mainly driven by our
need to minimize the motion blur thanks to a global shutter. Moreover, the
extended control over the camera’s parameters also allows for a slightly better
color perception. Another strategy that has proved quite convenient is the ability
to use a relatively wide angle lens (about 100° field of view). This wide field of
view is oriented vertically, which allows the robot to see both its feet and the
opponent goal in most cases but with the cost of a high image distortion.

Unfortunately during the competition we observed that the camera’s USB
3.0 interface provoked interference with the WiFi of our robots. This problem
seems to be well established now [1] and for the next year we plan to change our
cameras once more.

3 Electronics and Firmware

3.1 Custom Electronics Board

While all the high-level logic is executed in the robot embedded computer (Com-
pulab Fitlet), the low-level communication with the Dynamixel servo- motors
and sensors is managed by a custom “router” board. This board is driven by a
STM32 microcontroller (72 MHz 32 bit Cortex-M3 Arm) and is aimed at opti-
mizing the communication between servo-motors (Dynamixel TTL or RS485
bus), sensors (I2C or SPI) and the embedded computer via USB2 (Fig. 3).
This optimization is firstly done by separating the serial servo-motor bus in
three independent physical buses: one per leg and one for the upper body — the
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router board dealing with the three buses in parallel. Moreover, a pseudo “SYNC-
READ” command is implemented. This command asks for multiple values to be
read in one packet. This packet is actually processed by the microcontroller,
which issues standard read commands sequentially, parallelizing communication
through the three physical buses, and thus increasing the communication speed.

Cortex-M3 32bit ARM @72Mhz

Triple parallel serial
Dynamixel buses

Fig. 3. Our custom board to handle device communications.

When the robot is walking, a complete cycle, which includes a write and a
read on all its devices takes less than 10 ms.

3.2 Dynaban Alternative Firmware for Dynamixel

A currently ongoing open-source project is the Dynaban custom firmware® for
Dynamixel servo-motors. The aim of this project is to release to the commu-
nity a working open-source implementation of the Dynamixel firmware in order
to increase our control over the actuation. For example, a feed forward con-
trol has been implemented to improve the position’s tracking accuracy and was
originally presented in [2]. This controller makes use of polynomial position and
torque trajectories continuously sent ahead of time. This firmware has been suc-
cessfully tested (only in a standard mode without feed forward) during the whole
RoboCup 2016 competition on one of our Sigmaban robot.

4 Software

Our entire code base is implemented in C+411 and currently has the following
architecture:

3 Dynaban project: https://github.com/RhobanProject/Dynaban.
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— The low-level* thread is running the serial bus communication.

— The motion thread updates the models from low-level data, runs the team
play and the game controller services, updates high level states and finally
computes the walk and head motions.

— The perception thread sequentially reads a frame from the camera, extracts
the ball, goal posts and field features and then runs the localization particle
filter to update ball and absolute position estimation.

4.1 Robot Kinematics Models

An important component of our architecture is a complete geometric and
kinematics model implemented on top of the Rigid Body Dynamics Library
(RBDL®). The RBDL C++ library is developed by Martin Felis (Heidelberg
University) and implements the classical algorithms described in [3]. The model
of the robot is directly exported from the Computer-Aided Design (CAD) soft-
ware to a standard URDF® file.

Three different instances of the model are used and presented in the following;:

— “Goal model”: motor’s target positions,
— “Current model”: state of the robot estimated from current values of sensors,
— “Past model”: state of the robot slightly delayed.

The goal model is only considering the 20 joint degrees of freedom (DoF's). The
current and past models are also considering the support state (left or right
foot) and a 5 DoFs (x,y, yaw, pitch,roll) floating base located at the center of
the supporting foot.

“Goal” model: The goal model is used to represent the desired joint state
of the robot. Analytical Inverse Kinematics (IK) is implemented for the leg (6
DoFs) and for the head (2 DoFs). The leg IK allows to design a walk and kick
motion in Cartesian space by specifying the trunk and flying foot position and
orientation. The head IK is used to control the neck yaw and pitch motors in
order to target any given point in the Cartesian egocentric frame at the center
of the camera’s image.

“Current” model: The estimation of the current state of the robot is based
on motor encoders, the Inertial Measurement Unit (IMU) and the foot pressure
sensors. Firstly, the pressure sensors are measuring the weight on each foot. The
foot with the highest weight is considered as the current support foot and is
fixed on the ground. The IMU has 3 accelerometers and 3 gyroscopes filtered by
a AHRS system’ implemented on the embedded computer. This filter provides

* RhAL Rhoban low-level library: https://github.com/Rhoban/RhAL.

5 C++ Rigid Body Dynamics Library: http://rbdl.bitbucket.org/.

6 XML Unified Robot Description Format: http://wiki.ros.org/urdf.

" Open-Source Razor IMU AHRS filtering: https://github.com/ptrbrtz/razor-9dof-
ahrs.


https://github.com/Rhoban/RhAL
http://rbdl.bitbucket.org/
http://wiki.ros.org/urdf
https://github.com/ptrbrtz/razor-9dof-ahrs
https://github.com/ptrbrtz/razor-9dof-ahrs

Rhoban : RoboCup Kid-Size 2016 Champion Team Paper 497

pitch and roll Euler angles of the robot’s trunk. In addition, a simple integration
of the Z gyroscope provides an absolute yaw estimation. This yaw estimation is
obviously drifting but has proven to be quite accurate on small time scale. Typi-
cally, the drift is about 5° after 30's of robot manipulation. To estimate the robot
state, the IMU is considered exact. Given the joint positions, the orientation of
the support foot on the ground is set such that the trunk orientation matches
the IMU computed roll, pitch and yaw angles. The possible discrepancy between
the IMU and motor positions accounts for the soft ground and the mechanical
backlash.

Finally, the estimated state of the robot is also used to evaluate the odometry.
The estimation of the robot’s self relative motion is a very important ingredient
of the localization process. At each step, the relative displacement between the
new and the old support foot position is integrated. It comes out that the use
of the foot pressure sensors instead of relying only on the feet kinematics is
important to achieve accurate results. The accuracy of the odometry is further
improved through a calibration process detailed in the Sect. 4.2.

“Past” model: The past model is used to provide a history of the model state
at any point in the past. All the low-level data are stored for a fixed period
of time and can be used to rebuild a model of the robot state in the past. In
particular, this system is useful for the vision and localization components as
images can take a few hundred milliseconds to be processed. It is then necessary
to have access to a complete state of the model at the moment the image was
taken.

This model is mainly used for the localization of the Cartesian egocentric
position of an object on the ground at a given position on the image. And
secondly, the prediction of the expected ball radius in pixels at a given position
on current image, which is a strong criteria for ball or goal post false positive
rejection.

It is to be noted that all these models allow for the external features (ball,
goal post...) to be stored in the world absolute reference frame, taking into
account the robot’s displacement. For instance, even if the localization or ball
detection process runs at low frequency, the walk controller always could have
access to a fresh and updated ball relative position being patched up by the
odometry integration and model kinematics.

4.2 Odometry and Camera Calibration

Instead of relying on classical visual odometry as many other teams do in
RoboCup SPL [5], our odometry estimation is based on a simple kinematics
integration and a good support foot detection. In addition, the accuracy of the
estimation is improved through a calibration process coming from our previous
work [9].

The idea is to account for model errors and sliding ground contacts by learn-
ing a corrective model. The original work uses a motion capture setup and a non
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parametric non linear Locally Weighted Linear Regression (LWPR) method to
learn a corrective function of the robot’s relative displacement at each step.

The original motion capture setup is not convenient to deploy on a field dur-
ing the competition. Therefore, the full motion of the robot can not be measured
and the calibration process has been simplified for the RoboCup context. Instead
of the LWPR regression, a classical linear model is fitted. The robot is manually
driven between two known points on the field several times (6 runs were used).
During each run, all low-level data are recorded and the robot is driven such
as all walk directions (forward, backward, lateral steps) are explored. Then, the
robot’s displacements are replayed off-line and a black-box optimization algo-
rithm (CMA-ES [6]®) is applied to find the parameters of the model. The opti-
mization tries to minimise the error between the simulated robot final position
(under current odometry correction) and actual known robot’s displacement.
With this procedure, the odometry accuracy typically achieves a drift of about
20 cm for a displacement of 2.5 m forward, which was sufficient for our needs.

Another issue requiring a frequent calibration concerns the deformation of
mechanical parts. In particular, a deformation of the neck part holding the cam-
era can result in a large distance estimation error of external objects. A discrep-
ancy up to 5° on the kinematics orientation between the trunk and the camera
has been detected during the competition.

Here, the calibration is done by aiming the camera at known points on the
ground. A correction of the geometry between the camera and the trunk of the
robot is then computed by comparing the measured and expected positions of
these known points.

It is to be noted that these calibration procedure had to be repeated daily
during the competition.

4.3 Vision Flexible Architecture

The real RoboCup environment being only known at the beginning of the com-
petition, the algorithms used to detect key features often need to be adapted or
even modified entirely on site.

In order to allow for a quick prototyping, we represent our vision algorithm
as a directed acyclic graph of independent filters. The topology of the graph
and all the parameters of the filters are stored in XML configuration files which
can easily be modified. The vision core system is then able to instantiate on the
fly, OpenCV filters or custom algorithms based on this file. Basic monitoring
and parameters updates are available online, without requiring any interruption
of the program. Modifications of the topology of the graph require changes in
the configuration file, but they do not require compilation. In order to reduce
the computational burden of embedded vision, most of the filters heavily use
regions of interest, detecting the areas susceptible to contain useful information
in downscaled images.

8 CMA-ES C++ library: https://github.com/beniz/libcmaes.
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The consistency and guaranty of continuous improvement of the vision algo-
rithm is ensured by a benchmark process which uses manually tagged images
and compares them with the results of our algorithm. This allows us to run
non-regression tests to validate our modifications.

This setup allowed us to quickly adapt during the first few days and all along
the competition. We were able to experiment several approaches in parallel and
to choose the best one based on the benchmark results. Moreover, the quick
development time also allowed us to produce different independent algorithms
to detect the ball and the goals and also to work on different conditions in order
to be aggregated by the particle filter.

4.4 Localization with Particle Filter

In order to estimate the position of the robot on the field, we use a 3-dimensional
particle filter in which each particle represents an estimate of the position and
the orientation of the robot on the field. This filtering method allowed us to
aggregate observations from different sources.

As observations, we used measurement of a magnetic compass, the goal posts,
the borders and the corners of the field area. Since the measurements provided
by the magnetic compass are particularly noisy, we only use it as a binary infor-
mation, mainly to help disambiguation the field symmetry. Visual observations
are scored according to the angle between the camera to the theoretical position
vector and camera to the estimated position vector.

Since it was not possible for us to get rid of false positives, we decided to
impose a minimum score on the potential of the particles given visual obser-
vations. This value was chosen according to the false positive rate which was
provided by our benchmark system.

The mutation of the particles at each step was divided into two parts: con-
trolled mutation based on odometry; and exploration. This system heavily relies
on the corrected odometry which allows to strongly reduce the exploration
strength.

Due to the limited computational power, we were forced to use a maximum of
1000 particles, which is quite small considering the size of the 3D state space. In
order to face this problem, we introduced more a priori knowledge with special
particle distributions which are used to reset the filter after specific game events
such as kick-off or robot services. Likewise, the cases where the robot falls were
handled by adding an uniform noise on all the particles and by using a random
orientation.

For development and debugging, we can generate images summarizing the
results of the detection and the current state of the particle filter (see Fig. 4).

4.5 User Interface and Configuration Tool

Being able to easily and very quickly debug and tweak some parameters on the
robot is an essential element of the RoboCup competition. Our experience led
us to the conclusion that a command line interface was far more efficient than a
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Fig. 4. The result of the vision and localisation processes. The tagged image in the
middle is showing the ball estimated position and radius, goal post bases, goal center
direction, field borders estimation in black and the horizon line in blue (Color figure
online)

graphical one. So in order to fit our needs we developed the open-source project
RhIO? (Rhoban Input Output Library).

This is a lightweight client-server library targeted to be integrated into exist-
ing code in order to monitor, debug and configure a running process in real time.
The main user interface is a bash-like shell with a folder-file architecture. The
project is described more deeply in [10]. Note that the network protocol used
relies on TCP and can not be used for monitoring during games.

4.6 Team Play

Compared to the RoboCup Standard Platform League, our team play is still
very basic. Nevertheless, some simple and easy-to-implement robot coordination
have proven to be quite effective to improve game quality.

Our robots are continuously listening and broadcasting messages at 3 Hz on
the WiFi UDP. The packets are containing the:

— robot’s unique id,

ball position in egocentric frame and quality estimation,
— absolute position on the field and estimation quality,

— high level state (for monitoring),

— software errors (for monitoring).

The ball and field quality is an estimation between 0 and 1 of the confidence
over the computed position provided by the particle filter.

Based on these information, our first team play strategy has been running
since the RoboCup 2014 in Joao Pessoa. It implements a simple ball mutex area.
There is a hierarchy among the robots according to their knowledge of the ball
position. This system gives the priority to play the ball to the closest robot while
the others keep a specific fixed exclusion distance from the ball. Note that the
exclusion radius parameter is slightly different for each team member in order
to prevent two side attackers to lay on the same circle.

9 RhIO Project: https://github.com/rhoban/rhio.
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So when the main attacker falls, loses the ball or fails, he either indicates
no ball detection (zero quality) or stops broadcasting. Therefore, the next closer
side attacker takes the ball lock and tries to recover the ball possession. The last
feature of this simple behavior is that side teammates are following the main
attacker, resulting in nice grouped progression on the field. However, this simple
strategy does not explicitly prevent the teammates from colliding. An actual
avoidance system still need to be implemented.

Another team play strategy which was only implemented during the very end
of the RoboCup 2016 competition is the ball position sharing. When a robot is
unsuccessfully looking for the ball during a fixed period of time and if another
team member is localized and knows where the ball is with a sufficiently high
quality, these information are shared. For example, this allows lost attackers to
come back in defence when the goalie is detecting a nearby approaching ball.

4.7 Monitoring

By listening to the UDP broadcasts, an external software is able to monitor the
robots internal state during the games. As shown in Fig.5, we can see robots
localization on field, ball estimated position, high level behaviors state as well
as software errors. For example, this allow to clearly know that a Dynamixel
cable or the USB camera is disconnected after a fall. The rules allow in some
conditions to remove a robot temporary from the game. Monitoring has proven
to be an important feature during games and allows for a better pick-up or
service management of the robots. Typically, a malfunctioning robot or a lost
robot failing to recover a proper localization can be picked up and re-initialized
on the field’s border after a fixed among of time.

Time: 111,108

Fig. 5. Monitoring viewer showing in real time the robots state from UDP broadcast

5 Conclusion

As always, a lot of points are calling for improvements. We will pursue our
inspection of small industrial cameras and comparison of wide versus narrow
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field of view lenses for RoboCup vision. A better tracking accuracy could be
expected if our walk and kick motions were taking advantage of the new Dynaban
feed forward controller. Concerning the software, a more automatic and faster
camera calibration procedure would be more convenient to encompass the slow
mechanical deformation. The major task for the localization process next year
will be to break the field symmetry without the absolute magnetic orientation
and still improve its accuracy. Either by recognizing our own goalie or either by
detecting external features outside the field with a great caution to avoid moving
spectators. Finally, an accurate localization and other robots detection are the
last perception requirements to begin to develop real high level strategies similar
to the NAOs in Standard Platform League. The Kid-Size league may not be that
far from seeing ball passes between robots of the same team.
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