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Abstract—Most of the collaborative robot arms 

working alongside humans on factory floors do not have 

mechanisms for communicating with the human 

teammates. On the other hand, most of the socially 

expressive robots do not have capabilities to perform 

industrial tasks with high accuracy and repeatability. In 

this work we evaluate the effect of combining a social 

tablet-head robot with a collaborative robot arm. The 

tablet-head communicates with the human teammate 

through gazes and nods when they execute a collaborative 

task with the robot arm. We evaluate the effect of a tablet-

head on likability and efficiency of the robot. In our 

experiments, human participants perform a collaborative 

task with the robot arm in the presence and absence of this 

tablet-head. Our quantitative analysis shows that the 

likability of robot arm increases if it is accompanied by a 

tablet-head. Also, we find that the task efficiency is not 

affected by the inclusion of a tablet-head.  

Keywords—Collaborative Robots, Social Robots, Human-

Robot Interaction, Non-verbal communication, Teamwork 

and Collaboration  

I. INTRODUCTION 

 Industries are rapidly introducing small table-top 

robotic arms to work alongside human workers on 

factory floors. Examples of such robots are Universal 

Robot-5, Sawyer, Kuka LBR IIwa. These collaborative 

robotic arms or ‘cobots’ are designed to meet safety, 

accuracy and repeatability requirements. However, the 

likeability of cobots is usually not a design 

consideration. There have been reports of human 

workers’ unwelcoming attitude towards these 

collaborative robots. This may result in human capital 

loss and reduced productivity for the industry. Thus, 

there is a need to make likable collaborative robots.  

 

 At the other end of human-robot interaction, there are 

social robots or ‘sobots’ which are designed primarily 

for a better user experience. So, they can communicate 

verbally or through gestures, detect emotions and 

provide entertainment. But they are not designed for 

accuracy and repeatability required in an industrial 

application.  

 

 In this project, we build and evaluate a ‘co-so-bot’ 

(hybrid of collaborative and social robots) by combining 

a robotic arm and a tablet-on-neck social robot. Our 

hypothesis is that adding a simple tablet-head, which is 

capable of non-verbal communication with the human-

teammate, improves the likability of a collaborative 

robotic arm, even though the arm and tablet-head are not 

physically connected as a single entity. In industrial 

tasks the efficiency of task execution is of prime 

importance. So, our second hypothesis is that the ‘co-so-

bot’ approach increases the efficiency of teamwork. To 

evaluate these hypotheses, we run a within-subject 

experiment with human participants for two conditions. 

In the first condition, the participants perform a joint task 

with robotic arm alone and in the second condition, they 

perform the same task with our ‘co-so-bot’ 

configuration. We measure the likeability of each system 

using the Godspeed Questionnaire [1]. Also, we measure 

the efficiency of teamwork from video recordings of the 

experiments.  

II. RELATED WORK 

A. Rise of Industrial Collaborative Robots 

The world’s first industrial collaborative robot was 
introduced by Universal Robots in 2008 [2]. After 2012, 
larger robot manufacturers such as Kuka, ABB and 
Fanuc launched their own products in this new class of 
‘cobots’. However, all these robots are designed as 
simple robotic arms without any mechanism for social 
interaction with the human teammates. In 2015, Rethink 
Robotics released their collaborative robot called 
‘Sawyer’ which has animated eyes displayed on a screen 
attached to the robot arm. Our ‘co-so-bot’ configuration 
differs from this design as we place the simple tablet-
head outside of the workspace, so that it does not affect 
the reachability and task capabilities of the robot arm. 
Another advantage of our approach is that it is 



independent of the design of robot arm itself and hence 
compatible with different models of collaborative robot 
arms. 

B. Evaluation of Human-Robot Teamwork 

Hoffman and Breazeal (2004) [3] first developed the 
framework for joint-task execution by a human-robot 
team. Breazeal et al. (2005) [4] evaluated the effects of 
nonverbal communication on efficiency and robustness 
in human-robot teamwork. S. Lee et al. (2011) [5] 
evaluated the effects of appearance and functions on 
likability and perceived occupational suitability of 
robots. K Fischer et al. [6] evaluated the effects of social 
gaze in human-robot collaborative assembly. We 
compare the likeability and efficiency of a collaborative 
robot arm with and without the accompanying social 
tablet-head.    

III. SYSTEM OVERVIEW 

We built the hybrid ‘co-so-bot’ for performing joint 
tasks with a human by combining two independent 
robots and a vision sensor. As Aristotle rightly said 
‘Whole is greater than the sum of its parts’, the synergy 
between these parts enables the robot to perform 
complex tasks with a human teammate. The system is 
shown in Figure 1. 

 

 
Figure 1: System consists of a robot arm, tablet-head social robot and 

vision sensor 

A. Hardware 

a) Robotic Arm: We use the ‘WidowX Mark II’ robot 

manipulator built by Interbotix Labs. This robot arm is 

suitable pick-and-place tasks with medium lifting 

strength and high repeatability. It weighs 1.33 kg and has 

horizontal reach of 41 cm and vertical reach of 55cm. It 

can lift weights up to 0.4kg at 30 cm and 0.8kg at 10cm. 

This robot arm has 5 degrees of freedom (DoF). The 

actuators consist of two MX-64 Dynamixel Motors for 

shoulder and elbow, one MX-28 Dynamixel Motor for 

base rotation, one MX-28 Dynamixel Motor and one 

AX-12A Dynamixel Motor for the wrist. It is also 

equipped with one DoF parallel gripper with an AX-12A 

Dynamixel Actuator.  

 

b) Tablet-head: Our system includes a simple robot 

head to communicate with the human teammate through 

non-verbal cues like gazes and nods. It is developed by 

HR2C Lab at Cornell and consists of a Tablet Computer 

(Samsung Galaxy 3 Tab) mounted on a 4 DoF platform. 

The platform has four MX-28 Dynamixel actuators for 

pan, N-tilt, H-tilt and base rotation. In our experiments, 

we display a static image of two eyes on the tablet and 

control the actuators for signaling gazes and nods. In 

future, the eyes can be animated for better interaction. 

 

c) Vision sensor: The functional ‘eye’ of the robot is a 

‘Orbbec Astra’ sensor. It is a powerful standalone 3D 

camera with VGA color and range of 0.6m to 8m. 

  

d) Electronics: The robot arm and simple head are 

powered using 12V adapters. The arm is controlled using 

a ArbotiX-M Robocontroller which is connected to the 

Laptop running ROS through a USB.  

 

B. Software 

 
Figure 2: Modular software using ROS framework 

In recent years the robotics community has made 
tremendous progress in software development for robots 
using Robot Operating System (ROS). ROS is an open 
source software framework that provides operating-
system like capabilities for controlling low level 
hardware. By making the work of robotics community 
easily accessible to everyone, ROS enables us to ‘stand 
on the shoulders of giants’. 

As shown in Figure 2, we developed the software for 
controlling the robot in a modular way using the ROS 
framework. The low-level control of each component 
takes place in separate nodes. A main_controller node 
communicates with these nodes via ROS topics and ROS 
action server mechanism. 

a) Controlling the Robot Arm:  Interbotix has developed 
a ROS package called ‘widowx_arm’ for controlling the 
WidowX arm. This provides a ROS action server for 
commanding the robot arm to pick up objects and place 
them at desired locations. We wrote a client node to send 



position goals to this action server. We can also 
configure the gripping width to match the dimensions of 
objects to be picked up. 
 

b) Controlling the Tablet-Head: We use the 
‘simple_head’ package developed by Guy Hoffman at 
Cornell, to control the motion of tablet-head robot. The 
desired joint-state poses are stored in a YAML file and 
the robot can be commanded by publishing the desired 
pose on ‘\goto_pose’ topic. 
 

c) Tracking colored blocks: Orbbec has released the 
‘ros_astra_camera’ package to interface Orbbec Astra 
vision sensor with ROS. Their ‘ros_astra_launch’ 
package loads all nodelets to convert raw depth/RGB/IR 
streams to depth images, disparity images and registered 
point clouds. We use the ‘cmvision’ package developed 
by Nate Koenig to track different colored blobs in the 
RGB data from camera.  

IV. COLLABORATIVE EXECUTION 

A. Sample Task Description 

The robotic system described in previous section can 

perform complex structured tasks involving pick-and-

place operations of colored blocks. For this project, we 

consider this sample task: Different colored blocks are 

randomly scattered in the workspace. They must be 

picked up and placed in the target bins. Each bin 

corresponds to one color and the blocks can be picked 

up in any order. The robot is required to do this task 

jointly with a human. There can be multiple real-life 

counterparts of this task. For example, in medicine 

factory a collaborative robot and human partner need to 

sort medicines into different boxes or in kitchen a 

domestic robot and human need to put spices or grains in 

different containers. 

 

The high-level decision-making system of the robot 

is shown in Figure 3. It is implemented as a state-

machine in the ‘main_controller’ node. The states are 

defined as follows: 

• LookAtWorkspace: Simple-head turns towards 

workspace 

• LookAtTarget: Simple-head turns towards target area 

• LookAtPerson: Simple-head turns towards person 

• LookAtRobot: Simple-head turns towards the robot 

• Nod: Simple-head nods in agreement 

• Anti-nod: Simple-head nods in disagreement 

• MoveBlockNext: Robot arm moves block to target 

bin 

 
Figure 3: High-level decision making system of robot (implemented 

as a state-machine in main_controller node) 

The behavior of the robot satisfies these teamwork 

requirements [3]:  

• Turn taking: Robot looks at human after completing 

own turn and waits for human to finish their turn.    

• Dynamic meshing of sub plans: Robot chooses its 

actions based on the common goal and other teammates’ 

actions. The robot keeps track of completed subtasks 

(correctly sorted blocks) and decides the next action 

based on unfinished sub-tasks.   

• Mutual support: If the human places a block in 

incorrect target bin, in the next turn the robot places that 

block in correct target bin. Currently we do not have any 

gesture for requesting support from the human. 

• Mutual belief: Robot looks at the target area after 

human finishes their action. Robot nods in agreement if 

the human moved block to correct target bin. Robot nods 

in disagreement if the human moved block to incorrect 

target bin. 

 

V. EXPERIMENT 

We conduct a within-subject experiment with human 

participants to test following hypotheses: 

1. Robot is more likable in Condition-H than 

Condition-NH 

2. Task efficiency is more in Condition-H than 

Condition-NH  



Here conditions are defined as: 

Condition-H: Robotic arm and the tablet-head both 

(shown in Figure 4) 

Condition-NH: Only the robotic arm (shown in Figure 5) 

 

 
Figure 4: In Condition-H participants perform the block sorting task 

with the robot arm and the tablet-head 

 

 
Figure 5: In Condition-NH participants perform the block sorting task 

with the robot arm 

A. Procedure 

Three blocks of different colors (Red, Green, Blue) 

are placed on the table in some initial configuration. The 

target bins are marked by boxes. The human participants 

are first given a description of the task. They are asked to 

take alternate turns with the robot to move the blocks to 

target bins. It is explained that they can place the blocks 

in incorrect bins if they forget the correct target bin. 

Each participant performs this task for both Condition-H 

and Condition-NH. At the end of each task, they are 

asked to fill up a questionnaire. The questionnaire is 

based on Godspeed Questionnaire series [1]. It covers 

concepts such as likability, anthropomorphism, 

perceived intelligence and perceived safety. The users 

are asked to give ratings for impression of the robot on a 

scale of 1 to 5 for different questions which measure the 

same variable. The questions are arranged in a random 

order. 

 

Since this is a within-subject experiment, the order of 

Condition-H and Condition-NH is kept random to reduce 

the ordering effect. In the pilot experiment, we found 

that the block-tracking algorithm was not robust and 

affected the outcome of the experiment. So, to remove 

the effect of this additional independent variable, the 

initial positions of blocks are kept same in all the 

experiments. Also, one of the experimenters manually 

enters the user’s action using keyboard. To eliminate 

delays in this manual input, we use shorthand notations 

for each action of the user. For example, ‘r1’ is used for 

user’s action of moving ‘Red’ block to bin ‘1’. 

B. Participants 

A total of 7 participants completed the experiments. 

None of them were part of the HRI class and had never 

interacted with the robot before. They were nearly 

evenly mixed gender (4male, 3 female) and ranged in 

age from 22-29. No monetary compensation was given 

to the participants.  

C. Data Analysis and Results 

1. Measuring likability 

We use the data gathered from questionnaires to 

measure likeability of each condition. There are 5 

questions in the questionnaire that measure ‘likability’. 

We take arithmetic mean of each user’s ratings for these 

5 questions for Condition-H and Condition-NH. Table 1 

shows the mean, standard deviation, minimum and 

maximum likability ratings for Condition-H and 

Condition-NH. 

 
TABLE 1: USER LIKEABILITY RATINGS FOR TWO CONDITIONS 

   Condition-H Condition-NH 

N  7  7  

Mean  3.971  3.264  

Std. Deviation  0.4821  0.7341  

Std. Error  0.182  0.277  

Minimum  3.200  2.250  

Maximum  4.600  4.200  

      

We run a one-sided t-test to test the hypothesis that 

mean likability is greater in Condition-H than Condition-

NH. Table 2 shows the results of this t-test. On average, 

participants liked the combination of robot arm and 

tablet-head (M = 3.971, SE = 0.182) than only the robot 

arm (M = 3.264, SE = 0.277). Thus Hypothesis-1 is 

confirmed: t (6) = 2.395, p = 0.027 and Effect size = 

0.905 (Cohen’s d). 



 
TABLE 2: PAIRED SAMPLES T-TEST (LIKABILITY OF ROBOT) 

         t  df  p  Cohen's d  

Condition H  
 
-  

 
Condition NH  

 
2.395  

 
6  

 
0.027  

 
0.905 

 
 

 

2. Measuring efficiency 

We analyze the video recordings of each experiment 

to measure time taken by robot and human for 

completing each turn. One interesting observation is that 

some participants intentionally move the blocks to 

incorrect bins to test the robot. So total task completion 

time is not a good measure of task efficiency in this case. 

Therefore, we use the average time taken per turn by 

each teammate to measure the task efficiency. It is 

calculated by taking arithmetic mean of time taken for 

completing each turn by each agent. We also calculate 

the net average time per turn for the entire task by 

dividing task completion time with total number of turns 

taken by both the agents.  The efficiency is interpreted as 

the inverse of average time taken per turn. So lower 

average time per turn means higher efficiency. Table 3 

shows the average time per turn taken by each agent and 

the net average time per turn for the entire task. 

 
TABLE 3: AVERAGE TIME PER TURN (S) 

Agent Robot Human Net 

Condition   H NH H NH H NH 

N 
 

7 
 

7 
 

7 
 

7 
 

7 
 

7 
 Mean 

 
26.72 

 
26.28 

 
5.589 

 
4.615 

 
16.15 

 
15.45 

 Std. Deviation 
 
2.160 

 
2.015 

 
1.479 

 
0.7259 

 
1.702 

 
1.120 

 
Std. Error  0.817  0.762  0.559  0.274  0.643  0.423  
Minimum 

 
22.53 

 
22.89 

 
2.735 

 
3.750 

 
12.63 

 
13.70 

 Maximum 
 
29.35 

 
28.82 

 
7.245 

 
5.560 

 
17.44 

 
17.19 

 

 

 We run a one-sided t-test to check whether the 

average time taken per turn by robot is more in 

Condition-NH than Condition-H. The results of this t-

test are shown in Table 4. 

 
TABLE 4: PAIRED SAMPLES T-TEST (ROBOT’S AVERAGE TIME PER 

TURN) 

         t  df  p  Cohen's d  

Condition H  
 
-  

 
Condition NH  

 
0.523 

 
6  

 
0.690  

 
0.198 

 
 

The difference between average time taken per turn 

by the robot in Condition-H (M= 26.72s, SE = 0.817s) 

and Condition-NH (M = 26.28s, SE = 0.762s) is not 

significant: t (6) = 0.523, p = 0.690, Effect size = 0.198 

(Cohen’s d). This means that the robot takes same 

average time per turn in both conditions. So, hypothesis-

2 is not confirmed. 

We run a one-sided t-test to check whether the 

average time taken per turn by human is more in 

Condition-NH than Condition-H. The results of this t-

test are shown in Table 5. 

  
TABLE 5: PAIRED SAMPLES T-TEST (HUMAN’S AVERAGE TIME PER 

TURN) 

         t  df  p  Cohen's d  

Condition H  
 
-  

 
Condition NH  

 
1.453 

 
6  

 
0.902  

 
0.549 

 
 

The average time taken per turn by the human in 

Condition-H (M= 5.59s, SE = 0.559s) is not less than 

Condition-NH (M = 4.62s, SE = 0.274s). Thus, the 

hypothesis-2 is not confirmed: t (6) = 1.453, p = 0.902. 

 

To evaluate if there is any difference between the net 

average time per turn for entire task, we run a two-sided 

t-test. The results of this t-test are shown in Table 6.   

 
TABLE 6: PAIRED SAMPLES T-TEST (NET AVERAGE TIME PER TURN) 

         t  df  p  Cohen's d  

Condition H  
 
-  

 
Condition NH  

 
1.018 

 
6  

 
0.348 

 
0.385 

 
 

The difference between net average time taken per 

turn in Condition-H (M= 16.15s, SE = 0.643s) and 

Condition-NH (M = 15.45s, SE = 0.423s) is not 

significant: t (6) = 1.018, p = 0.348. This means that the 

efficiency is same in both conditions. 

 

D. Discussion 

      This experiment evaluates the effect of combining a 

social robot with a collaborative robot arm. The robot 

arm alone can also perform a joint task with human 

teammate. Though addition of a social-robot does not 

give additional functional capabilities to the arm, our 

results confirm that the likability of the robot increases if 

it is accompanied by a simple-head robot. This simple-

head robot performs non-verbal communication with the 

human-teammate through gazes and nods. We also find 

that the average time taken by robot and the human is 

not significantly different in Condition-H than 

Condition-NH. This means that the efficiency of robot 

and human is almost the same in both conditions. 

However, participants informally reported that the time 

taken by robot was perceived to be less in Condition-H 

than Condition-NH. This may be attributed to the fact 



that in Condition-H participants were engaged with the 

social-robot head when the robot arm was in idle state.  

 

     Another important observation is that the average 

time taken by human per turn is significantly less than 

the average time taken by robot per turn. The limitations 

on robot’s speed come from the sequential execution of 

actions in a pick-and-place operation. The 

pick_and_place_action_server of widowx_arm package 

executes a pick-and-place operation in this sequence: 

start from idle position, open gripper, hover over the 

starting position, go down in z-direction, close the 

gripper, go up in z-direction, hover over the target 

position, go down in z-direction, open the gripper, go up 

in z-direction, go back to idle position. This sequential 

method is not an efficient way of implementation. The 

speed can be significantly increased by performing 

parallel operations.  

VI. CONCLUSION 

In the first phase of this project, we built a platform for 

human-robot collaboration by combining off-the-shelf 

robot arm, simple-head robot and a vision sensor. 

Individually, the robot arm performs pick-and-place 

operations, tablet head carries out non-verbal 

communication with the human teammate and vision 

sensor tracks state of the environment. We connected 

these individual components through a main controller in 

ROS framework. To make the robot autonomous, we 

developed its high-level decision-making algorithm 

based on teamwork requirements found in HRI literature. 

Currently, this robotic system can perform joint tasks 

with a human that involve pick and place operations. In 

future, we would like to extend it to other dexterous 

manipulation tasks with the use of appropriate gripper.  

 

In the second phase of this project, we conducted 

human-subject experiments to compare the likeability 

and task efficiency of robot arm with and without the 

tablet-head. Human participants were asked to perform a 

block-sorting task by taking alternate turns with the 

robot. Analysis of the participants’ responses to 

questionnaire confirms our hypothesis that a tablet-head 

increases the likeability of a collaborative robot arm. 

Also, the analysis of video recordings shows that there is 

no significant difference in the efficiency of two 

conditions. The major drawback in this experiment is 

‘novelty effect’. As none of the participants had 

interacted with the robot before, they may have given 

high likeability ratings in the experiments. It is possible 

that once the novelty associated with the robot wears off, 

the likeability of both the conditions (with and without 

the social-head robot) becomes same. Thus, future work 

includes a long-term experiment of collaborative robots 

working with human partners. 
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